extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3xD5) = Dic5.D6 | φ: S3xD5/C5xS3 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.1(S3xD5) | 240,140 |
C22.2(S3xD5) = Dic3.D10 | φ: S3xD5/C3xD5 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.2(S3xD5) | 240,143 |
C22.3(S3xD5) = C30.C23 | φ: S3xD5/D15 → C2 ⊆ Aut C22 | 120 | 4- | C2^2.3(S3xD5) | 240,141 |
C22.4(S3xD5) = Dic3xDic5 | central extension (φ=1) | 240 | | C2^2.4(S3xD5) | 240,25 |
C22.5(S3xD5) = D10:Dic3 | central extension (φ=1) | 120 | | C2^2.5(S3xD5) | 240,26 |
C22.6(S3xD5) = D6:Dic5 | central extension (φ=1) | 120 | | C2^2.6(S3xD5) | 240,27 |
C22.7(S3xD5) = D30:4C4 | central extension (φ=1) | 120 | | C2^2.7(S3xD5) | 240,28 |
C22.8(S3xD5) = C30.Q8 | central extension (φ=1) | 240 | | C2^2.8(S3xD5) | 240,29 |
C22.9(S3xD5) = Dic15:5C4 | central extension (φ=1) | 240 | | C2^2.9(S3xD5) | 240,30 |
C22.10(S3xD5) = C6.Dic10 | central extension (φ=1) | 240 | | C2^2.10(S3xD5) | 240,31 |
C22.11(S3xD5) = C2xD5xDic3 | central extension (φ=1) | 120 | | C2^2.11(S3xD5) | 240,139 |
C22.12(S3xD5) = C2xS3xDic5 | central extension (φ=1) | 120 | | C2^2.12(S3xD5) | 240,142 |
C22.13(S3xD5) = C2xD30.C2 | central extension (φ=1) | 120 | | C2^2.13(S3xD5) | 240,144 |
C22.14(S3xD5) = C2xC15:D4 | central extension (φ=1) | 120 | | C2^2.14(S3xD5) | 240,145 |
C22.15(S3xD5) = C2xC3:D20 | central extension (φ=1) | 120 | | C2^2.15(S3xD5) | 240,146 |
C22.16(S3xD5) = C2xC5:D12 | central extension (φ=1) | 120 | | C2^2.16(S3xD5) | 240,147 |
C22.17(S3xD5) = C2xC15:Q8 | central extension (φ=1) | 240 | | C2^2.17(S3xD5) | 240,148 |