Extensions 1→N→G→Q→1 with N=C22 and Q=S3xD5

Direct product G=NxQ with N=C22 and Q=S3xD5
dρLabelID
C22xS3xD560C2^2xS3xD5240,202

Semidirect products G=N:Q with N=C22 and Q=S3xD5
extensionφ:Q→Aut NdρLabelID
C22:(S3xD5) = D5xS4φ: S3xD5/D5S3 ⊆ Aut C22206+C2^2:(S3xD5)240,194
C22:2(S3xD5) = S3xC5:D4φ: S3xD5/C5xS3C2 ⊆ Aut C22604C2^2:2(S3xD5)240,150
C22:3(S3xD5) = D5xC3:D4φ: S3xD5/C3xD5C2 ⊆ Aut C22604C2^2:3(S3xD5)240,149
C22:4(S3xD5) = D10:D6φ: S3xD5/D15C2 ⊆ Aut C22604+C2^2:4(S3xD5)240,151

Non-split extensions G=N.Q with N=C22 and Q=S3xD5
extensionφ:Q→Aut NdρLabelID
C22.1(S3xD5) = Dic5.D6φ: S3xD5/C5xS3C2 ⊆ Aut C221204C2^2.1(S3xD5)240,140
C22.2(S3xD5) = Dic3.D10φ: S3xD5/C3xD5C2 ⊆ Aut C221204C2^2.2(S3xD5)240,143
C22.3(S3xD5) = C30.C23φ: S3xD5/D15C2 ⊆ Aut C221204-C2^2.3(S3xD5)240,141
C22.4(S3xD5) = Dic3xDic5central extension (φ=1)240C2^2.4(S3xD5)240,25
C22.5(S3xD5) = D10:Dic3central extension (φ=1)120C2^2.5(S3xD5)240,26
C22.6(S3xD5) = D6:Dic5central extension (φ=1)120C2^2.6(S3xD5)240,27
C22.7(S3xD5) = D30:4C4central extension (φ=1)120C2^2.7(S3xD5)240,28
C22.8(S3xD5) = C30.Q8central extension (φ=1)240C2^2.8(S3xD5)240,29
C22.9(S3xD5) = Dic15:5C4central extension (φ=1)240C2^2.9(S3xD5)240,30
C22.10(S3xD5) = C6.Dic10central extension (φ=1)240C2^2.10(S3xD5)240,31
C22.11(S3xD5) = C2xD5xDic3central extension (φ=1)120C2^2.11(S3xD5)240,139
C22.12(S3xD5) = C2xS3xDic5central extension (φ=1)120C2^2.12(S3xD5)240,142
C22.13(S3xD5) = C2xD30.C2central extension (φ=1)120C2^2.13(S3xD5)240,144
C22.14(S3xD5) = C2xC15:D4central extension (φ=1)120C2^2.14(S3xD5)240,145
C22.15(S3xD5) = C2xC3:D20central extension (φ=1)120C2^2.15(S3xD5)240,146
C22.16(S3xD5) = C2xC5:D12central extension (φ=1)120C2^2.16(S3xD5)240,147
C22.17(S3xD5) = C2xC15:Q8central extension (φ=1)240C2^2.17(S3xD5)240,148

׿
x
:
Z
F
o
wr
Q
<